Carvedilol as a potential novel agent for the treatment of Alzheimer’s disease

Jun Wanga,b, Kenjiro Onoc, Lara D. Dicksteind, Isabel Arrieta-Cruza, Wei Zhaoa, Xianjuan Qiana, Ashley Lamparelloa, Rakesh Subnania, Mario Ferruzzie, Constantine Pavlidesf, Lap Hoa,b,g, Patrick R. Hofd, David B. Teplowc, Giulio M. Pasinettia,b,d,g,*

a Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
b Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, United States
c Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California, Los Angeles, CA, United States
d Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, United States
e Department of Food Science, Purdue University, West Lafayette, IN, United States
f The Rockefeller University, New York, NY, United States
g Geriatric Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States

Received 26 January 2010; received in revised form 15 April 2010; accepted 1 May 2010

Abstract

Oligomeric β-amyloid (Aβ) has recently been linked to synaptic plasticity deficits, which play a major role in progressive cognitive decline in Alzheimer’s disease (AD). Here we present evidence that chronic oral administration of carvedilol, a nonselective β-adrenergic receptor blocker, significantly attenuates brain oligomeric Aβ-amyloid content and cognitive deterioration in 2 independent AD mouse models. We found that carvedilol treatment significantly improved neuronal transmission, and that this improvement was associated with the maintenance of number of the less stable “learning” thin spines in the brains of AD mice. Our novel observation that carvedilol interferes with the neuropathologic, biochemical, and electrophysiological mechanisms underlying cognitive deterioration in AD supports the potential development of carvedilol as a treatment for AD.

© 2011 Elsevier Inc. All rights reserved.

Keywords: Oligomeric Aβ; Cognitive function; Spatial memory; Basal neuronal transmission; Dendritic spine; Synaptic plasticity; Bioavailability

1. Introduction

Alzheimer’s disease (AD) is a devastating neurological disorder that imposes a tremendous health burden on society. Currently available palliative medications have not demonstrated significant beneficial effects in AD (Lyketsos et al., 2004) and treat symptoms only.

Growing evidence suggests that cognitive deterioration in AD is directly linked to the accumulation of extracellular soluble oligomeric β-amyloid (Aβ) species, rather than amyloid plaque deposition in the brain (Cleary et al., 2005; Gylys et al., 2003; Klyubin et al., 2005; Kotilinek et al., 2002; Lambert et al., 1998; Lesne et al., 2006; Shankar et al., 2008). Oligomeric Aβ induces synapse degeneration and synaptic plasticity disruption, which contribute to mechanisms underlying the onset and progression of dementia in AD (Coleman et al., 2004; Jacobsen et al., 2006; Lacor et al., 2004; Scheff and Price, 2003; Selkoe, 2002; Shankar et al., 2007, 2008; Terry et al., 1991; Walsh et al., 2002). Thus, interference with oligomeric Aβ formation...
presents a viable preventative and/or therapeutic strategy for AD dementia (Klein, 2002; McLaughlin et al., 2006; Seabrook et al., 2007; Zhao et al., 2009).

Carvedilol is a nonselective β-adrenergic receptor blocker, widely prescribed for treating congestive heart failure and hypertension (Packer et al., 1996). Previous structural analysis suggested that carvedilol possesses a specific 3-dimensional pharmacophore conformation, associated with the ability to bind Aβ and prevent Aβ from forming oligomeric fibrils (Howlett et al., 1999). A recent study suggested that use of carvedilol is associated with cognitive benefits in AD patients (Rosenberg et al., 2008). In the present study, we explored the potential beneficial role of carvedilol in AD neuropathology and cognitive deterioration in mouse models of AD, in addition to the potential mechanism associated with its beneficial effect.

2. Methods

2.1. Animals

TgCRND8 transgenic mice carrying a human amyloid precursor protein (APP) containing a familial AD double mutation (Swedish KM670/671NL and Indiana V717F) (Chishti et al., 2001), expressed under the control of a prion promoter, were generated by mating TgCRND8 males with wild type (WT) females (Charles River, Wilmington, MA). The offspring of the wild-type and heterozygous TgCRND8 were genotyped at 30 days of age. A second, independent AD mouse model (Tg2576 AD transgenic mice) engineered with the ability to bind Aβ and prevent Aβ from forming oligomeric fibrils (Hsiao et al., 1996) were purchased from Taconic (Taconic Farms, Germantown, NY).

All mice were housed with food and water available ad libitum, and maintained on a 12-hour light/dark cycle with lights on at 7:00 AM in a temperature-controlled (20 ± 2 °C) room prior to experimental manipulation. All procedures and protocols were approved by the Mount Sinai School of Medicine’s Institutional Animal Care and Use Committee (IACUC) through the Center for Comparative Medicine and Surgery.

2.2. Carvedilol treatment

Female TgCRND8 mice were treated with 1.5 mg/kg/day of carvedilol delivered in their drinking water, starting at 8 weeks of age. Using US Department of Agriculture-recommended formulation for converting equivalent drug dosage between species, 1.5 mg/kg/day is equivalent to 7.5 mg per day in human (US Food and Drug Administration: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078932.pdf). TgCRND8 mice were assigned to 2 groups: carvedilol treatment and water control groups. Animals had free access to both liquid and standard chow. Drinking solutions were changed once every week. After 5 months of treatment, mice were sacrificed by decapitation. Brains were harvested as previously described (Wang et al., 2005). Tg2576 mice were treated with the same dose of carvedilol for 7 months, starting at 5 months of age.

2.3. Photoinduced cross-linking of unmodified proteins assay (PICUP)

Freshly isolated low molecular weight Aβ1–42 (10–20 μM) or Aβ1–40 (30–40 μM) peptides were mixed with 1 μL of 1 mM tris (2,2′-bipyridyl) dichlororuthenium (II) (Ru(bpy)) and 1 μL of 20 mM ammonium persulfate (APS) in the presence or absence of equal molar concentration of carvedilol or 10-fold excess of carvedilol. The mixture was irradiated for 1 second, and quenched immediately with 10 μL of Tricine sample buffer (Invitrogen, Carlsbad, CA) containing 5% β-mercaptoethanol (Bitan et al., 2001). The reaction was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis and visualized by silver staining (SilverXpress, Invitrogen, Carlsbad, CA).

2.4. Circular dichroism (CD) spectroscopy

CD spectra of Aβ:carvedilol mixtures were acquired immediately after sample preparation or following 2, 3, 6, or 7 days of incubation. CD measurements were made by removing a 200 mL aliquot from the reaction mixture, adding the aliquot to a 1 mm path length CD cuvette (Hellma, Forest Hills, NY), and acquiring spectra in a J-810 spectropolarimeter (JASCO, Tokyo, Japan). The CD cuvettes were maintained on ice prior to introduction into the spectrometer. Following temperature equilibration, spectra were recorded at 22 °C from ~190 to 260 nm at 0.2 nm resolution with a scan rate of 100 nm/minute. Ten scans were acquired and averaged for each sample. Raw data were manipulated by smoothing and subtraction of buffer spectra according to the manufacturer’s instructions.

2.5. Electron microscopy (EM)

A 10 μL aliquot of each sample was spotted onto a glow-discharged, carbon-coated formvar grid (Electron Microscopy Sciences, Hatfield, PA) and incubated for 20 minutes. The droplet then was displaced with an equal volume of 2.5% (v/v) glutaraldehyde in water and incubated for an additional 5 minutes. Finally, the peptide was stained with 8 μL of 1% (v/v) filtered (0.2 mm) uranyl acetate in water (Electron Microscopy Sciences). This solution was wicked off and then the grid was air-dried. Samples were examined using JEOL CX100 transmission electron microscopy (JEOL Skandinaviska AB, Sollentuna, Sweden).

2.6. Bioavailability of carvedilol

Mouse brain specimens were harvested and carvedilol was extracted from homogenized brain tissue with diethyl ether (3×). Ether fractions were combined and frozen at −80 °C for 20 minutes, after which extracts were filtered, dried under vacuum, and resolublized in 400 μL mobile
phase prior to analysis by high performance liquid chromatograph-mass spectrometer. Carvedilol separations were performed on a Waters 2695 (Waters, Milford, MA) separations system using an Xterra C18 column (3 μm, 150 × 3.9 mm inner dimension; Waters) and resolved using an isocratic mobile phase consisting of solvent ddH2O:acetonitrile:formic acid (64.9:35:0.1) at a flow rate of 0.7 mL/minute. Following separation the column effluent was introduced by positive mode electrospray ionization (ESI) into a Waters ZQ MSD (Waters). Mass data (from mass-to-charge ratio [m/z] 150 – 650) were collected and analyzed using Empower2 software.

2.7. Behavioral assessment of cognitive functions by the Morris water maze test and novel object recognition test

Spatial learning memory was assessed by the Morris water maze behavioral test, as previously described (Morris, 1984; Wang et al., 2007). Mice were tested in a 1.25 m circular pool filled with water mixed with nontoxic white paint (Dick Blick Art Materials, Wheaton, IL). In the initial learning phase, mice were exposed to daily training sessions over 7 consecutive days which were designed to allow the animals to learn to escape from the water by using the spatial cues provided to localize and then climb onto a hidden/submerged (1.5 cm below water surface) escape platform (14 × 14 cm) in a restricted region of the pool. Spatial memory is assessed by recording the latency time for the animal to escape from the water onto the submerged escape platform as a function of the number of learning trials during the learning phase. Twenty-four hours after the learning phase, mice were subjected to a 45-second probe trial wherein the escape platform was removed. Spatial memory retention is reflected by the increasing proportion of time animals spent within the “target” quadrant of the pool that previously contained the hidden escape platform. Water maze activity during training and probe trials was monitored with the San Diego Instrument Poly-Track video tracking system (San Diego, CA).

Novel object recognition memory tests were performed as described by Bevins and Besheer (2006). During the first consecutive 5 days of the object recognition test, animals were exposed for 10 minutes each day to the test environment comprised of a 40 cm square white box. On the testing day, the mouse was placed into the empty box for 1 minute and then returned to the home cage. The testing mouse was subsequently subjected to a learning trial in which they were given the opportunity to familiarize themselves with 2 identical test objects placed in symmetrical location at opposite ends of the box for 10 minutes. One hour (short-term memory testing) or 24 hours (long-term memory testing) after the learning trial, animals were given an object recognition test to assess whether or not they “remember” that they have been exposed to the test object during the learning trial. The object recognition test was conducted by placing each individual mouse into the testing box containing the familiarized “old” object and a novel (“new”) object that are located, respectively, at each end of the cage. Each mouse was kept in the cage for 10 minutes, and its behavior during the entire period was recorded by the San Diego Instrument Poly-Track video tracking system (San Diego, CA). The videos were scored, in blind to the treatment schedule, based on the frequency of individual mice to interact with either the familiarized “old” or the novel “new” object. Interaction or no interaction was scored by counting the amount of time spent (in seconds), by the mouse, in contact (nose pointing at and touching the object) with the objects.

2.8. Assessment of AD-type amyloid neuropathology

Total Aβ1–40 or Aβ1–42 in the brain were quantified by sandwich enzyme-linked immunosorbent assay (ELISA) (BioSource, Camarillo, CA), as previously described (Wang et al., 2005). The level of soluble Aβ oligomers was measured by 3 independent assays: dot blot assay, western blot analysis (McLaurin et al., 2006; Wang et al., 2008), and by ELISA (Wang et al., 2008). Soluble amyloid peptide was extracted in phosphate-buffered saline (PBS) and centrifuged at 78,500g for 1 hour at 4 °C, and the supernate was analyzed either by dot blot using A11 antibody specific for oligomeric forms of Aβ or western analysis using the 6E10 (Signet, Dedham, MA) or A11 antibody. Immunoreactive signals were visualized and quantified. For quantitative oligomeric Aβ analysis, the same sample was applied to a commercially-available ELISA kit that specifically detects aggregated beta amyloid using protocols provided by the manufacturer (Invitrogen).

2.9. Plaque and spine analysis

Animals were perfused transcardially with 4% paraformaldehyde in phosphate buffer and 0.125% glutaraldehyde. Brain specimens were carefully removed from the skull and postfixed in 4% paraformaldehyde/0.125% glutaraldehyde in phosphate buffer for 6 hours. Fixed brain hemispheres were sectioned on a vibratome at 50 μm for plaque count and 200 μm for cell loading experiments.

Plaque burden was analyzed as previously described (Wang et al., 2005). Briefly, tissue was stained with Thioflavin-S and micrograph was taken. Plaque burden was quantified using ImageJ software (version 1.4) that converts micrograph to binary images for plaque number and plaque area analysis.

For dendritic spine analysis, individual neurons in the fixed frontal cortex were identified by 4,6-diamidino-2-phenylindole (DAPI; Sigma, St. Louis, MO) and injected with 5% Lucifer Yellow (Molecular Probes, Eugene, OR) under a direct current (DC) of 3–8 nA for 5–10 minutes or until the dye has filled distal processes and no further loading is observed. Brain sections containing loaded neurons were then mounted in Permafluor mounting medium (Immunotech, Marseille, France) on glass slides. The cells were then traced using a 63×/1.4 numerical aperture. Plan-
Fig. 1. Carvedilol attenuates aggregation of β-amyloid (Aβ) peptides in vitro. (a) Sodium dodecyl sulfate polyacrylamide gel electrophoresis of Aβ₁₋₄₂ and Aβ₁₋₄₀ in the presence or absence of carvedilol following photoinduced cross-linking of unmodified proteins assay (PICUP). Aβ₁₋₄₂ (left panel), Aβ₁₋₄₀ (middle panel), and glutathione S-transferase (GST) control (right panel) were cross-linked in the presence or absence of carvedilol and the bands in subsequent sodium dodecyl sulfate polyacrylamide gels were visualized using silver staining. In all 3 panels: MW, molecular weight; lanes 1, non-cross-linked Aβ₁₋₄₂, Aβ₁₋₄₀, or GST control; lanes 2, aggregated Aβ₁₋₄₂, Aβ₁₋₄₀, or GST; lanes 3 and 4, Aβ₁₋₄₂, Aβ₁₋₄₀, or GST aggregated in the presence of an equimolar concentration (lane 3) or 10× molar excess (lane 4) of carvedilol. The Aβ₁₋₄₂ trimer band (middle panel) has been shown to be a sodium dodecyl sulfate-induced artifact. (b) Circular dichroism spectroscopy assessment of Aβ peptide secondary structure dynamics. Aβ₁₋₄₂ (top panel) and Aβ₁₋₄₀ (bottom panel) were incubated at 37 °C for 7 days alone in 10 mM phosphate, pH 7.4 (left panel), or in the presence of an equimolar concentration (middle
panel) or 10× molar excess (right panel) of carvedilol. Spectra were acquired immediately at the start of the incubation period on day 0 and after 1, 2, 3, 6, and 7 days. The spectra presented at each time are representative of those obtained from each of 3 independent experiments. (c) Electron microscopy assessment of Aβ fibril morphology. As indicated, synthetic Aβ_{1-42} (top panel) or Aβ_{1-40} (bottom panel) incubated at 37 °C for 7 days either alone (left panel) or in the presence of an equimolar concentration (middle panel) or 10× molar excess to (right panel) of carvedilol. Scale bars indicate 100 nm.

2.10. Electrophysiological recordings

The animals were sacrificed by decapitation and the brain specimens were quickly removed. The hippocampus was hemisected and placed into ice cold oxygenated artificial cerebrospinal fluid (ACSF) for 1 minute. The composition of ACSF was 10 mM d-glucose, 124 mM NaCl, 1.25 mM NaNH2PO4, 26 mM NaHCO3, 4.9 mM KCl, 1 mM CaCl2, and 4 mM MgCl2; and was saturated with 95% O2 + 5% CO2. Immediately thereafter, both hippocampi were dissected and sliced using a tissue chopper (350 μm). Slices were transferred to a recording chamber and perfused continuously with oxygenated ACSF. An automatic temperature control unit allowed a water bath to be maintained at 32 °C, thus allowing the perfusing ACSF to be warmed to this temperature. Slices were perfused at a rate of 1 mL/min and humidified with 95% O2 + 5% CO2 gas during the length of the experiment.

For extracellular recordings, Schaffer collateral projections from the CA3 region were stimulated with a monopolar stainless steel electrode (100 μm diameter) for activation of the CA1 neurons. A recording borosilicate glass electrode, filled with 3 M NaCl with 1–2 M Ω resistance was placed in the CA1 region to record field excitatory postsynaptic potentials (fEPSP). The recording electrode was placed within 150–200 μm of the stimulating electrode. Constant current pulses (150 microseconds, 20–30 μA) were delivered using a stimulus isolator unit (A310 Accupulser, World Precision Instruments, Sarasota, FL) and evoked fEPSPs were recorded with an amplifier (A-M Systems, Sequim, WA) and monitored on a digital oscilloscope. Responses were elicited every 1 minute and digitalized, stored and analyzed using an Apple Macintosh computer (Apple Inc., Cupertino, CA) and custom-built software based on LabView 5.1 software by National Instruments (Austin, TX).

3. Results

3.1. The effect of carvedilol on Aβ oligomerization by PICUP analysis

Structural analysis suggested that carvedilol might be able to bind to Aβ and therefore prevent Aβ to aggregate into oligomeric fibrils (Howlett et al., 1999). In in vitro studies using the photo-induced cross-linking of unmodified proteins (PICUP) technique, we explored the impact of
carvedilol on initial peptide-to-peptide interactions that are necessary for spontaneous oligomerization of Aβ peptides (Vollers et al., 2005). In the absence of cross-linking, only Aβ1–42 monomers and trimers and Aβ1–40 monomers were revealed on the SDS-PAGE gel (Fig. 1a, lane 1, left panel for Aβ1–42, middle panel for Aβ1–40; the Aβ1–42 trimer band is an SDS-induced artifact). Using cross-linking to stabilize Aβ peptide-to-peptide interactions, we confirmed that Aβ peptides spontaneously aggregate into multimeric conformers; Aβ1–42 formed a mixture of monomers and oligomers of orders 2–6, whereas Aβ1–40 formed a mixture of monomers and oligomers of orders 2–4 (Fig. 1a, lane 2, left panel for Aβ1–42 and middle panel for Aβ1–40). We found that Aβ1–42 oligomerization was blocked almost completely by carvedilol (Fig. 1a, left panel, lane 3: equal molar concentrations of carvedilol and Aβ1–42 peptide). Carvedilol also interfered with oligomerization of Aβ1–40 in a dose-dependent manner. Incubation of Aβ1–40 with carvedilol at equimolar concentrations completely abolished the formation of aggregated Aβ1–40 tetramers species and significantly reduced the generation of Aβ1–40 trimers and dimers species (Fig. 1a, middle panel, lane 3). In the presence of a 10-fold excess of carvedilol, the formation of Aβ1–40 trimers was completely blocked and the amount of Aβ1–40 dimers was further reduced (Fig. 1a, middle panel, lane 4). In a control study, we confirmed that carvedilol did not interfere with the PICUP chemistry itself, as reflected by a similar distribution pattern of glutathione-S-transferase (GST) oligomers in the presence or absence of carvedilol (Fig. 1a, right panel).

3.2. The effect of carvedilol on Aβ secondary structure dynamics by CD

Using circular dichroism (CD) spectroscopy, we examined the effects of carvedilol on the secondary structure of Aβ. Self-assembly of Aβ is characterized by a conformational transition from random coil to α-helix/b-sheet (Kirkitadze et al., 2001). Normal spontaneous aggregations of Aβ1–40 and Aβ1–42 peptides produce a shift in minimum molar ellipticity from ~195 nm to ~215–220 nm that reflects the transition from random coil to α-helix/b-sheet during the first 3 days of incubation (Fig. 1b). We found that carvedilol inhibited the conformational transition of Aβ peptides from random coil to α-helix and β-sheet conformers in a dose-dependent manner (Fig. 1b).

3.3. The effect of carvedilol on Aβ assembly morphology by EM

We next applied an electron microscopy (EM) methodology to examine the structural morphology of the Aβ1–42 and Aβ1–40 assemblies in the presence and absence of carvedilol. Consistent with PICUP and CD studies, carvedilol strongly attenuated fibril assembly for both Aβ1–42 and Aβ1–40 peptides. Compared with control Aβ1–40 fibrils generated in the absence of carvedilol, we found that coinoculation of Aβ1–40 with equimolar concentrations of carvedilol markedly reduced the number of fibrils formed and that fibrils generated in the presence of carvedilol were quantitatively thinner (4 nm versus 8 nm) (Fig. 1c, bottom panel) and shorter and characterized by amorphous aggregates (Fig. 2c, bottom panel). The impact of carvedilol on Aβ1–42 assembly were similar to those on Aβ1–40 peptide; cotreatment of Aβ1–42 with carvedilol significantly reduced both the number and the length of fibrils, and increased the frequency of amorphous aggregates (Fig. 2c, top panel).

Collectively, our in vitro studies suggest that carvedilol inhibits aggregations of Aβ peptides into structurally ordered neuropathological Aβ conformers, in part by interfering with Aβ peptide protein-protein interactions. Based on this observation we tested the physiological relevance of carvedilol in AD by exploring the role of carvedilol in cognitive function and neuropathology using independent TgCRND8 (see below) and Tg2576 (see supplementary material) AD mouse models.

3.4. Carvedilol is well tolerated and is detected in the mouse brain following oral administration

At 3 months of age, TgCRND8 mice start to develop amyloid plaques, and at 5–6 months of age, TgCRND8 mice present AD-type neuropathology and cognitive deficits similar to that seen in human AD, as well as altered synaptic function and neuroplasticity (Chishti et al., 2001; Jolas et al., 2002). Starting at 8 weeks of age, approximately 4 weeks before the onset of the AD-type amyloid accumulation, TgCRND8 mice were given 1.5 mg/kg/day carvedilol, which is equivalent to 7.5 mg per day in humans. This dose is 2–3 times lower than the prescribed dosage for treating cardiovascular dysfunction in humans.

Consistent with a previous observation that carvedilol easily crosses the blood-brain barrier (Bart et al., 2005), we found accumulations of carvedilol in the brain after 5 months of treatment (Fig. 2a). No detectable levels of carvedilol were obtained in the brain tissues of strain-, age-, and gender-matched water-treated control mice (data not shown). Consistent with evidence that carvedilol is highly tolerable, we found that 5 months of carvedilol treatment delivered through drinking water was well tolerated by TgCRND8 mice without any adverse effects as reflected by their stable body weight and unaltered blood pressure and heart rate (Fig. 2b and 2c). We also observed a reduced mortality rate in the carvedilol treated TgCRND8 mice compared with the water-treated controls (Fig. 2d). In an independent study, we found that 5 months of carvedilol treatment was also well tolerated in the Tg2576 mouse model of AD (Supplementary Fig. 1a).

3.5. Carvedilol treatment improves cognitive function in AD mice

Based on the observation that carvedilol is bioavailable in the brain and well-tolerated, we used the Morris water
maze (MWM) test to explore the functional role of carvedilol treatment in attenuating cognitive deterioration. We found that 5 months of carvedilol treatment led to significant improvements in behavioral cognitive functions of TgCRND8 mice relative to water-treated control TgCRND8 mice ($p < 0.015$ for treatment effect, Fig. 3a, left panel). More importantly, the carvedilol-treated group showed significantly improved spatial memory retention in the MWM probe trial after 24 hours ($p < 0.05$) (Fig. 3a, right panel). In parallel control studies, we confirmed that both groups performed equally well in a visible trial, excluding the possibility that drug treatment might affect nonspatial parameters, such as sensorimotor performance and motivation (data not shown).

We continued to assess the effect of carvedilol on cognitive behavioral functions in AD mouse models using an independent, novel object recognition test (Ennaceur and Delacour, 1988). We found a tendency for carvedilol-treated TgCRND8 mice to spend more time exploring the novel object in the short term (1-hour) memory test, compared with control, nontreated TgCRND8 mice, but the difference was not statistically significant (carvedilol-treated mice, 68.2 ± 3.7% versus control mice 62.4 ± 3.1%, $p = 0.26$; Fig. 3b). However, when animals were
assessed for long term memory consolidation (24-hour test), we found that carvedilol-treated TgCRND8 mice performed significantly better and spent significantly more time exploring the novel object compared with control, nontreated TgCRND8 mice (65.7 ± 2.6% vs. 51.7 ± 2.8%, p < 0.05; Fig. 3b). In control studies, we found that carvedilol treatment did not influence cognitive function in wild type animals (Supplementary Fig. 2a).

Consistent with our observation in the TgCRD8 AD mouse model, we found that 5 months of carvedilol treatment also significantly attenuated cognitive deterioration in Tg2576 mice, as evaluated by the MWM test and the novel object recognition test (Supplementary Fig. 1b and 1c).

Collectively, our observation from 2 independent AD mouse models using 2 independent cognitive behavioral tests demonstrate that carvedilol benefits spatial memory as well as general memory function in AD-type mice by interfering with AD-type Aβ-mediated brain injury.

3.6. Carvedilol treatment reduces oligomeric Aβ and improves basal synaptic transmission in the brains of AD mice

Because cognitive deterioration in AD mouse models like the TgCRND8 and Tg2576 mice correlated with the accumulation of soluble oligomeric Aβ, we then evaluated...
brain oligomeric Aβ content by quantitative ELISA and Western blot analysis, as previously described (Wang et al., 2008). Both assays revealed a significant reduction in soluble oligomeric Aβ content in the carvedilol-treated mouse brain (Fig. 3c, left panel for ELISA, p < 0.01; right panel for Western blot, p < 0.05). The reduced oligomeric Aβ in the brain coincided with improvements in other AD-associated neuropathological markers, such as plaque burden in the brain (Fig. 3d) and reduced total Aβ_{1–42} (91.8 ± 16.6 ng/mg protein in control group vs. 142.5 ± 13.6 ng/mg protein in carvedilol treated group, *p < 0.05) and Aβ_{1–40} levels (48.2 ± 15.5 ng/mg protein in control group vs. 83.1 ± 9.9 ng/mg protein in carvedilol treated group, *p < 0.05). We found that chronic carvedilol treatment did not affect the level of total APP transgene expression in the brain of TgCRND8 mice (Supplementary Fig. 2b).

Consistent with these observations in TgCRND8 mice, we also found significant attenuation of total Aβ content, as well as oligomeric Aβ, in the brains of Tg2576 mice treated with carvedilol for 5 months (Supplementary Fig. 1d and 1e).

Synaptic transmission and plasticity are essential to cognitive function. Oligomeric Aβ was indicated to play important role in the early pathogenesis and synapse loss in AD (Coleman et al., 2004; Gylys et al., 2003; Lambert et al., 1998; Rowan et al., 2005; Shankar et al., 2008; Walsh et al., 2002). We hypothesized that carvedilol treatment would reduce oligomeric Aβ, and therefore might have a beneficial impact on neuronal transmission by attenuating oligomeric-Aβ-mediated synaptic toxicity, especially in lieu of the fact that carvedilol does not affect cognitive function in wild type mice. We analyzed the hippocampal slices from carvedilol-treated TgCRND8 mice, and found that the strength of the basal synaptic transmission was significantly improved in carvedilol-treated TgCRND8 mice relative to water-treated control mice, as measured by the field excitatory postsynaptic potentials (fEPSP) slope. The maximum fEPSP slope was 5.2 ± 0.36 for the water-treated control group (n = 7 slices) and 8.48 ± 1.04 for the carvedilol-treated group (n = 10 slices, p < 0.001; Fig. 3e), suggesting that chronic carvedilol treatment could re-establish the strength of basal synaptic transmission in the CA1 region of hippocampal slices following stimulation of the Schaffer collateral projections from the CA3 region. Thus, our study supports the role of carvedilol in reducing Aβ oligomerization and protecting the integrity of neuronal transmission in TgCRND8 mice.

3.7. Carvedilol treatment retains the amount of “learning” thin spines

Dendritic spines are major sites of synaptic transmission, and their density and proper structure are essential for synaptic plasticity. Normally, about 65% of all spines in the mature brain are comprised of thin dendritic spines (Harris et al., 1992; Peters and Kaiserman-Abramof, 1970). Thin dendritic spines are morphologically less stable than other dendritic spines (e.g., stubby spines, mushroom shaped spines), but they are considered important for learning processes. We found that cognitive deterioration in TgCRND8 mice was associated with a reduced proportion of thin dendritic spines (54.1 ± 4.0%) compared with the normal ~65% observed in wild type mice. In contrast, carvedilol treatment retained the percentage of thin spines almost to wild type levels (62.2 ± 1.6%). This change correlated with a significant reduction in the amounts of stubby spines (30.9 ± 3.3% in control water-treated vs. 23.1 ± 0.8% in carvedilol-treated mice; Fig. 3f, right panel, thin spine/stubby spine ratio, p < 0.01). No difference was observed in the percentage of the mature mushroom type of dendritic spines, nor in spine density, in the brain of carvedilol-treated versus nontreated TgCRND8 mice (control, 2.43 ± 0.68 spines/μm of dendrites vs. carvedilol, 2.43 ± 0.55 spines/μm of dendrites).

Collectively, our evidence from in vitro Aβ assembly studies and in vivo preclinical studies in AD mouse models demonstrates the efficacy of carvedilol treatment to mitigate AD-type cognitive deterioration, in part by interfering with oligomeric Aβ-mediated neurotoxicity, leading to the preservation of key anatomic structures necessary for normal synaptic function.

4. Discussion

Oligomeric Aβ has been shown to impair synapse generation and synaptic plasticity (Coleman et al., 2004; Gylys et al., 2003; Jacobsen et al., 2006; Lacor et al., 2004; Lambert et al., 1998; Scheff and Price, 2003; Selkoe, 2002; Shankar et al., 2007, 2008; Terry et al., 1991; Walsh et al., 2002). In this study, we showed that carvedilol, a widely prescribed, highly tolerated β-adrenergic receptor blocker, can significantly attenuate Aβ peptide fibrillation and oligomerization by several different biophysical measures. PICUP analysis revealed that carvedilol interferes with early stage Aβ dimer, trimer, and tetramer (Aβ_{1–40}) or pentamer and hexamer (Aβ_{1–42}) formation. Independent CD spectroscopy and EM studies confirmed that carvedilol effectively prevents the formation of ordered α-helix and β-sheet conformers or protofibrils. Moreover, chronic carvedilol treatment attenuated spatial memory deterioration, coincidental with a reduction in soluble oligomeric Aβ content in the brains of TgCRND8 and Tg2576 mice. Because carvedilol is highly bioavailable in the brain and is able to physically interact with Aβ peptides, it is very likely that carvedilol exerts its biological function by preventing Aβ fibrillation and oligomerization in the brain of AD mice.

Given the strong anti-Aβ fibrillation/oligomerization activity of carvedilol, it is possible that carvedilol interferes directly (or indirectly) with fibrillary and oligomeric Aβ formation and prevents its neurotoxic interactions at the dendritic spine and synapse level. Consistent with this hy-
pothesis, cortical neurons obtained from carvedilol-treated TgCRND8 mice retained a higher proportion of thin spines, comparable to that found in wild type animals, whereas untreated TgCRND8 mice had significantly fewer thin spines. Thin dendritic spines are considered to be responsible for learning and the maintenance of structural flexibility to accommodate key inputs, compared with the more stable mushroom spines (Holmata et al., 2005; Kasai et al., 2003; Zuo et al., 2005). Thus, carvedilol treatment leading to the preservation of dendritic thin spines might contribute to the maintenance of basal synaptic transmission, and hence improved cognitive function, as observed in carvedilol-treated TgCRND8 mice.

Evidence also shows that therapeutic efficacy of carvedilol for treating cardiovascular diseases is mediated, in part, through its antioxidant and anti-inflammatory activities (Dandona et al., 2007; Hayashi et al., 2008). Exposure to carvedilol has also been shown to be neuroprotective (Goyagi et al., 2006; Hayashi et al., 2008; Savitz et al., 2000) and associated with a slower rate of functional decline in AD (Rosenberg et al., 2008). Both oxidative stress and inflammation have been implicated in the pathogenesis of AD, thus it is possible that the previously described antioxidant and anti-inflammatory activity of carvedilol might contribute to its ability to interfere with AD-type cognitive deterioration in our transgenic mouse models.

Carvedilol is a nonselective adrenergic receptor antagonist. It was reported that the application of β-blockers could affect delayed memory in patients with cognitive impairment, while other studies showed that β-blockers did not have any negative effect on cognition (Perez-Stable et al., 1992; Saber and Cain, 2003). Studies using experimental models have shown that spatial memory performance worsened following a combination of serotonin depletion and antagonism of β-adrenergic receptors, while either depletion of serotonin or antagonism of β-adrenergic receptors alone was shown to cause no impairments (Gliebus and Lippa, 2007; Kenton et al., 2007). In our study, the application of carvedilol alone at doses 2–3 times lower than the equivalent dosage prescribed in humans to treat cardiovascular dysfunction may have been low enough, so as not to induce any adverse effect in cognitive function. However, future studies exploring the mechanisms underlying carvedilol absorption and eventually carvedilol-Aβ pharmacokinetics and pharmacodynamics in the brain, in addition to the extent to which brain beta receptors are being blocked, will further clarify the biochemical and pharmacological role of carvedilol in preventing Aβ-mediated responses.

Collectively, evidence from our in vitro studies revealing that carvedilol interferes with Aβ aggregation mechanisms, and from our preclinical studies demonstrating the efficacy of carvedilol treatment to mitigate AD-type amyloid neuropathology and cognitive dysfunction in AD mouse models, supports the continued development of carvedilol for the treatment (and/or prevention) of AD dementia.

Disclosure statement

The authors declare there are no competing financial interests in relation to the work described.

All procedures and protocols were approved by the Mount Sinai School of Medicine’s Institutional Animal Care and Use Committee (IACUC) through the Center for Comparative Medicine and Surgery.

Acknowledgements

This work is supported by NIH U01 AG29310 (GMP) and funding provided by Altschul Foundation.

Appendix. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.neurobiolaging.2010.05.004.

References

